home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE ZTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
- * .. Scalar Arguments ..
- INTEGER INCX, K, LDA, N
- CHARACTER*1 DIAG, TRANS, UPLO
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), X( * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZTBMV performs one of the matrix-vector operations
- *
- * x := A*x, or x := A'*x, or x := conjg( A' )*x,
- *
- * where x is an n element vector and A is an n by n unit, or non-unit,
- * upper or lower triangular band matrix, with ( k + 1 ) diagonals.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the matrix is an upper or
- * lower triangular matrix as follows:
- *
- * UPLO = 'U' or 'u' A is an upper triangular matrix.
- *
- * UPLO = 'L' or 'l' A is a lower triangular matrix.
- *
- * Unchanged on exit.
- *
- * TRANS - CHARACTER*1.
- * On entry, TRANS specifies the operation to be performed as
- * follows:
- *
- * TRANS = 'N' or 'n' x := A*x.
- *
- * TRANS = 'T' or 't' x := A'*x.
- *
- * TRANS = 'C' or 'c' x := conjg( A' )*x.
- *
- * Unchanged on exit.
- *
- * DIAG - CHARACTER*1.
- * On entry, DIAG specifies whether or not A is unit
- * triangular as follows:
- *
- * DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *
- * DIAG = 'N' or 'n' A is not assumed to be unit
- * triangular.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * K - INTEGER.
- * On entry with UPLO = 'U' or 'u', K specifies the number of
- * super-diagonals of the matrix A.
- * On entry with UPLO = 'L' or 'l', K specifies the number of
- * sub-diagonals of the matrix A.
- * K must satisfy 0 .le. K.
- * Unchanged on exit.
- *
- * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
- * by n part of the array A must contain the upper triangular
- * band part of the matrix of coefficients, supplied column by
- * column, with the leading diagonal of the matrix in row
- * ( k + 1 ) of the array, the first super-diagonal starting at
- * position 2 in row k, and so on. The top left k by k triangle
- * of the array A is not referenced.
- * The following program segment will transfer an upper
- * triangular band matrix from conventional full matrix storage
- * to band storage:
- *
- * DO 20, J = 1, N
- * M = K + 1 - J
- * DO 10, I = MAX( 1, J - K ), J
- * A( M + I, J ) = matrix( I, J )
- * 10 CONTINUE
- * 20 CONTINUE
- *
- * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
- * by n part of the array A must contain the lower triangular
- * band part of the matrix of coefficients, supplied column by
- * column, with the leading diagonal of the matrix in row 1 of
- * the array, the first sub-diagonal starting at position 1 in
- * row 2, and so on. The bottom right k by k triangle of the
- * array A is not referenced.
- * The following program segment will transfer a lower
- * triangular band matrix from conventional full matrix storage
- * to band storage:
- *
- * DO 20, J = 1, N
- * M = 1 - J
- * DO 10, I = J, MIN( N, J + K )
- * A( M + I, J ) = matrix( I, J )
- * 10 CONTINUE
- * 20 CONTINUE
- *
- * Note that when DIAG = 'U' or 'u' the elements of the array A
- * corresponding to the diagonal elements of the matrix are not
- * referenced, but are assumed to be unity.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. LDA must be at least
- * ( k + 1 ).
- * Unchanged on exit.
- *
- * X - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element vector x. On exit, X is overwritten with the
- * tranformed vector x.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * .. Local Scalars ..
- COMPLEX*16 TEMP
- INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L
- LOGICAL NOCONJ, NOUNIT
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO , 'U' ).AND.
- $ .NOT.LSAME( UPLO , 'L' ) )THEN
- INFO = 1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
- $ .NOT.LSAME( TRANS, 'T' ).AND.
- $ .NOT.LSAME( TRANS, 'C' ) )THEN
- INFO = 2
- ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
- $ .NOT.LSAME( DIAG , 'N' ) )THEN
- INFO = 3
- ELSE IF( N.LT.0 )THEN
- INFO = 4
- ELSE IF( K.LT.0 )THEN
- INFO = 5
- ELSE IF( LDA.LT.( K + 1 ) )THEN
- INFO = 7
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 9
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'ZTBMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- NOCONJ = LSAME( TRANS, 'T' )
- NOUNIT = LSAME( DIAG , 'N' )
- *
- * Set up the start point in X if the increment is not unity. This
- * will be ( N - 1 )*INCX too small for descending loops.
- *
- IF( INCX.LE.0 )THEN
- KX = 1 - ( N - 1 )*INCX
- ELSE IF( INCX.NE.1 )THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through A.
- *
- IF( LSAME( TRANS, 'N' ) )THEN
- *
- * Form x := A*x.
- *
- IF( LSAME( UPLO, 'U' ) )THEN
- KPLUS1 = K + 1
- IF( INCX.EQ.1 )THEN
- DO 20, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- TEMP = X( J )
- L = KPLUS1 - J
- DO 10, I = MAX( 1, J - K ), J - 1
- X( I ) = X( I ) + TEMP*A( L + I, J )
- 10 CONTINUE
- IF( NOUNIT )
- $ X( J ) = X( J )*A( KPLUS1, J )
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- TEMP = X( JX )
- IX = KX
- L = KPLUS1 - J
- DO 30, I = MAX( 1, J - K ), J - 1
- X( IX ) = X( IX ) + TEMP*A( L + I, J )
- IX = IX + INCX
- 30 CONTINUE
- IF( NOUNIT )
- $ X( JX ) = X( JX )*A( KPLUS1, J )
- END IF
- JX = JX + INCX
- IF( J.GT.K )
- $ KX = KX + INCX
- 40 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 60, J = N, 1, -1
- IF( X( J ).NE.ZERO )THEN
- TEMP = X( J )
- L = 1 - J
- DO 50, I = MIN( N, J + K ), J + 1, -1
- X( I ) = X( I ) + TEMP*A( L + I, J )
- 50 CONTINUE
- IF( NOUNIT )
- $ X( J ) = X( J )*A( 1, J )
- END IF
- 60 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 80, J = N, 1, -1
- IF( X( JX ).NE.ZERO )THEN
- TEMP = X( JX )
- IX = KX
- L = 1 - J
- DO 70, I = MIN( N, J + K ), J + 1, -1
- X( IX ) = X( IX ) + TEMP*A( L + I, J )
- IX = IX - INCX
- 70 CONTINUE
- IF( NOUNIT )
- $ X( JX ) = X( JX )*A( 1, J )
- END IF
- JX = JX - INCX
- IF( ( N - J ).GE.K )
- $ KX = KX - INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Form x := A'*x or x := conjg( A' )*x.
- *
- IF( LSAME( UPLO, 'U' ) )THEN
- KPLUS1 = K + 1
- IF( INCX.EQ.1 )THEN
- DO 110, J = N, 1, -1
- TEMP = X( J )
- L = KPLUS1 - J
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*A( KPLUS1, J )
- DO 90, I = J - 1, MAX( 1, J - K ), -1
- TEMP = TEMP + A( L + I, J )*X( I )
- 90 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*DCONJG( A( KPLUS1, J ) )
- DO 100, I = J - 1, MAX( 1, J - K ), -1
- TEMP = TEMP + DCONJG( A( L + I, J ) )*X( I )
- 100 CONTINUE
- END IF
- X( J ) = TEMP
- 110 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 140, J = N, 1, -1
- TEMP = X( JX )
- KX = KX - INCX
- IX = KX
- L = KPLUS1 - J
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*A( KPLUS1, J )
- DO 120, I = J - 1, MAX( 1, J - K ), -1
- TEMP = TEMP + A( L + I, J )*X( IX )
- IX = IX - INCX
- 120 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*DCONJG( A( KPLUS1, J ) )
- DO 130, I = J - 1, MAX( 1, J - K ), -1
- TEMP = TEMP + DCONJG( A( L + I, J ) )*X( IX )
- IX = IX - INCX
- 130 CONTINUE
- END IF
- X( JX ) = TEMP
- JX = JX - INCX
- 140 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 170, J = 1, N
- TEMP = X( J )
- L = 1 - J
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*A( 1, J )
- DO 150, I = J + 1, MIN( N, J + K )
- TEMP = TEMP + A( L + I, J )*X( I )
- 150 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*DCONJG( A( 1, J ) )
- DO 160, I = J + 1, MIN( N, J + K )
- TEMP = TEMP + DCONJG( A( L + I, J ) )*X( I )
- 160 CONTINUE
- END IF
- X( J ) = TEMP
- 170 CONTINUE
- ELSE
- JX = KX
- DO 200, J = 1, N
- TEMP = X( JX )
- KX = KX + INCX
- IX = KX
- L = 1 - J
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*A( 1, J )
- DO 180, I = J + 1, MIN( N, J + K )
- TEMP = TEMP + A( L + I, J )*X( IX )
- IX = IX + INCX
- 180 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*DCONJG( A( 1, J ) )
- DO 190, I = J + 1, MIN( N, J + K )
- TEMP = TEMP + DCONJG( A( L + I, J ) )*X( IX )
- IX = IX + INCX
- 190 CONTINUE
- END IF
- X( JX ) = TEMP
- JX = JX + INCX
- 200 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of ZTBMV .
- *
- END
-